
DLC - **F**5*

Victor Bastos[†]

I. PÊNDULO COM AMIGOS

Duas massas, A e B, que possuem massa m e estão ligadas por uma corda e por polias sem massa. Inicialmente, o comprimento do fio de cada lado é l, então, a massa A recebe um pequeno impulso e balança com amplitude $\epsilon << l$. Depois de muito tempo mesmo (\dot{r} é muito pequeno), uma das massas alcança a polia. Inicialmente, a amplitude é ϵ_o

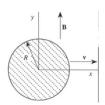
- a) Qual foi a massa que atingiu a polia?
- b) Qual é a velocidade da massa que atinge a polia imediatamente antes alcançar a polia?

II. GLOBO

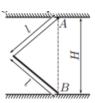
A superfície de um globo de plástico foi revestida com um material metálico bom condutor. Na situação da figura abaixo, onde o globo está em um meio com uma condutividade elétrica baixa, porém diferente de zero, uma corrente fixa é inserida pelo fio vertical e sai pelo fio horizontal. Determine o campo magnético nos pontos da bissetriz do ângulo formado pelos fios.

III. SENHOR DOS ANEIS

a) 3 Loops quase completos, de raios R, 2R e 4R são feitos de fios condutores. Uma corrente que varia com


o tempo circula no loop do meio. Encontre a voltagem induzida no maior loop quando a voltagem medida nos terminais do menor loop é V_o .

b) Dois aneis supercondutores estão muito distantes. Enquanto muito distantes, um deles (A) possui corrente I_o e o outro (B) não possui corrente. Os dois aneis são, então, colocados próximos. Encontre a corrente que circula em A quando circula I_1 em B.


IV. ESFERA CONDUTORA

Uma esfera condutora de raio R se move com velocidade constante v em um campo magnético uniforme B_o (see Figure). Ache a densidade superficial de cargas σ induzida na esfera, na menor ordem possível de $\frac{v}{\sigma}$

V. BARROU

Uma barra uniforme de comprimento l está ligada a um fio de mesma extensão preso ao teto pelo ponto A. Sabendo que a distância de A até B vale L < H < 2l e que a barra de massa m parte do repouso, calcule a velocidade máxima atingida pela barra, a aceleração do centro de massa e a tração do fio nesse instante.

†

^{*} OIFs 2019

GABARITO

1) a) Massa
$$B$$
.

b)
$$V = \sqrt{\frac{\epsilon_o^2 g}{2l} (1 - \frac{1}{\sqrt{2}})}$$

2)
$$B = \frac{\mu_o I}{2\pi r} (\sqrt{2} + 1)$$

3) a)
$$V = 2V_o$$

b)
$$I_a = \frac{I_o + \sqrt{I_o^2 + 4I_1^2}}{2}$$

4)
$$\sigma = \frac{v}{c^2} \epsilon_o B_o^2 cos\theta$$

2)
$$B = \frac{\mu_o I}{2\pi r} (\sqrt{2} + 1)$$

3) a) $V = 2V_o$
b) $I_a = \frac{I_o + \sqrt{I_o^2 + 4I_1^2}}{2}$
4) $\sigma = \frac{v}{c^2} \epsilon_o B_o cos \theta$
5) $v = \sqrt{g(l - \frac{H}{2}, a - \frac{v^2}{2l})}$