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1. Bicicletou

A wheel with spokes rolls without slip-

ping on the ground. A stationary camera

takes a picture of it as it rolls by, from the

side. Due to the nonzero exposure time of the

camera, the spokes generally appear blurred.

At what locations in the picture do the spo-

kes not appear blurred? Hint: A common in-

correct answer is that there is only one point.

2. Porta giratória

A uniform rectangular door of mass with

sides and and negligible thickness rotates with

constant angular velocity about a di agonal.

Ignore gravity. Find the torque that must be

applied to keep the door rotating.

Figura 1: Problema 2

3. Baratinha do Aldeota

A toy globe rotates freely without friction

with an initial angular velocity ωo A bug star-

ting at one pole N travels to the other pole

S along a meridian with constant velocity v

The axis of rotation of the globe is held fixed.

Let M and R denote the mass and radius of

the globe (a solid sphere, moment of inertia

Io =
2

5
MR2 the mass of the bug, and T the

duration of the bug’s journey.

Figura 2: Problema 3

Show that, during the time the bug is tra-
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veling, the globe rotates through an angle

∆θ =
πωoR

v

√
2M

2M + 5m
A useful integral is∫ 2π

0

dx

a+ bcos(x)
=

2π√
a2 − b2

4. Axle Rose

A massless axle has one end attached to a

wheel (a uniform disk of mass m and radius

r), with the other end pivoted on the ground.

The wheel rolls on the ground without slip-

ping, with the axle inclined at an angle θ.

The point of contact on the ground traces

out a circle with frequency Ω.

(a) Show that ω points horizontally to the

right (at the instant shown), with magnitude

ω = Ω/tanθ.

(b) Show that the normal force between

the ground and the wheel is

N = mgcos2θ+mrΩ2

(
1

4
cosθsen2θ +

3

2
cos3θ

)

Figura 3: Problema 4

5. Tadeu Momento

If the line of action of the impulse in the

previous problem does not lie in the vertical

plane defined by the points T, C and P, then,

just after the shot, the ball’s angular velocity

vector will not be perpendicular to the velo-

city of its centre of mass. Billiards players

call this shot a Coriolis-massé. Such a shot

is shown in the figure, in which the line of

action of the impulse meets the ball’s surface

(for a second time) at T’ and the table at A.

Figura 4: Problema 5

(a) What kind of trajectory does the ball’s

centre of mass follow from just after the shot

until the point at which simultaneous rolling

and slipping cease?

(b) In which direction, relative to the line

PA, will the ball continue its path once it

starts to roll without slipping? Assume that,

whatever the downward force acting on it,

the billiard cloth does not ‘become squashed’,

and the ball’s contact with it is always a

point contact.
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6. Truque de Mágica

A large flat disc with a rough surface rota-

tes around the axis of symmetry that is nor-

mal to its plane, and does so with constant

angular velocity Ω. The plane of the disc is

tilted at an angle θ relative to the horizontal.

A magician places a solid rubber ball of

radius R and mass m on the rotating disc

and starts it off in an appropriate direction.

Then, to the audience’s great surprise, the

centre of the ball moves uniformly in a straight

line, until it reaches the rim of the rotating

disc. Throughout the ball’s motion, it does

not slip on the disc, and the angular velocity

of the disc does not change.

Find a physical explanation for this strange

phenomenon. In which direction, and how

quickly, should the magician start the ball

for this stunt to be successful?

Figura 5: Problema 6

7. Rolando estranho

The standard way that a ball rolls without

slipping on a flat surface is for the contact

points on the ball to trace out a vertical great

circle on the ball. Are there any other ways

that a ball can roll without slipping?

8. Rolando estranho e reto?

In some situations, such as the rolling-

coin setup in Problem 7, the velocity of the

CM of a rolling object changes direction as

time goes by. Consider a uniform sphere that

rolls on the ground without slipping (possi-

bly in the nonstandard way described in the

solution to Problem 7). Is it possible for the

CM’s velocity to change direction?

9. Terremoto

A uniform ball rolls without slipping on a

table (possibly in the nonstandard way des-

cribed in the solution to Problem 7). It rolls

onto a piece of paper, which you then slide

around in an arbitrary (horizontal) manner.

You may even give the paper abrupt, jerky

motions, so that the ball slips with respect

to it. After you allow the ball to come off

the paper, it will eventually resume rolling

without slipping on the table. Show that the

final velocity equals the initial velocity.
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10. Agora Complicou

A uniform ball rolls without slipping on a

turntable (possibly in the nonstandard way

described in the solution to Problem 7). As

viewed from the inertial lab frame, show that

the ball moves in a circle (not necessarily cen-

tered at the center of the turntable) with a

frequency equal to 2/7 times the frequency

of the turntable.

11. Chapéu de Mago

A ball (with I =
2

5
MR2) rolls without

slipping on the inside surface of a fixed cone,

whose tip points downward. The half-angle

at the vertex of the cone is θ. Initial con-

ditions have been set up so that the contact

point on the cone traces out a horizontal cir-

cle of radius l >> R, at frequency Ω, while

the contact point on the ball traces out a cir-

cle of radius r (not necessarily equal to R,

as would be the case for a great circle). As-

sume that the coefficient of friction between

the ball and the cone is sufficiently large to

prevent slipping. What is the frequency of

precession, Ω? It turns out that Ω can be

made infinite if
r

R
takes on a particular va-

lue; what is this value? Work in the appro-

ximation where R << l .

12. Parádoxo dos Golfinhos

A small solid rubber ball of radius r is th-

rown onto the inner wall of a long cylindrical

tube, which has radius R and is fixed with

its axis of symmetry vertical. If the ball is

started off with a sufficiently large horizon-

tal velocity vo, then it starts to oscillate pe-

riodically in the vertical direction, while still

maintaining contact with the tube. Describe

the ‘dance’ performed by the centre of the

ball. The static friction is quite large, and so

the ball never slides on the wall. Assume that

the ball is sufficiently incompressible that its

contact with the tube is only ever through

a single point, and that air drag and rolling

friction are negligible.

13. NUTação

Assume that uniform circular precession

is initially taking place with θ = θo and Φ =

Ωs. You then give the top a quick kick along

the direction of motion, so that Φ suddenly

becomes Ωs + ∆Ω (∆Ω may be positive or

negative). Find Φ(t) and θ(t).

Assume that the top is spinning rapidly(
ω3 >> Ωs =

Mgl

I3ω3

)
and that senθ ≈ senθo

.

Dica: Lembre do torque no heavy top e

de nutação.
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As próximas duas questões são de provas da
Apho e da Ipho. Se você não quiser fazê-las

para evitar estragar simulado. A última página
é para fontes e referências, então é seguro pular

para ela.
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14. Foguetas

Introduction

In more than half a century of space operations quite a large number of man-made objects

have been amassed near Earth. The objects that do not serve any particular purpose are

called space debris. The most attention is usually paid to the larger debris objects, i.e.

defunct satellites and spent rocket upper stages, which stay in orbit after delivering their

payload. Collisions of such objects with each other may result in thousands of fragments

endangering all current space missions.

There is a well-known hypothetical scenario, according to which certain collisions may

cause a cascade where each subsequent collision generates more space debris that increase

the likelihood of new collisions. Such a chain reaction, resulting in the loss of all near-Earth

satellites and making impossible further space programs, is called the Kessler syndrome.

To prevent such undesirable outcome special missions are planned to remove large debris

object from their present orbits either by tugging them to the Earth’s atmosphere or to

graveyard orbits. To this end a specially designed spacecraft – a space tug – must capture a

debris object. However, before capturing an uncontrolled object it is important to understand

its rotational dynamics. We suggest you to take part in planning of such a mission and find

out how the rotational dynamics of a debris object changes in time under the influence of

different factors.

Rocket Stage Schematic

The debris object to be considered is a ”Kerbodyne 42”rocket upper stage, whose sche-

matic is shown in Fig. 1. The circle line in Fig. 1 marks the outline of a spherical fuel

tank.
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We introduce a body-fixed reference frame Cxy with the origin in the center of mass C, x

being the symmetry axis of the stage, and y perpendicular to x. The inertia moments with

respect to x and y axes are Jx and Jy (Jx < Jy).

Part A. Rotation (3.8 points).

Consider an arbitrary initial rotation of the stage with angular momentum

L (Fig. 2), where θ is the angle between the symmetry axis and the direction

of angular momentum. Fuel tank at this point is assumed to be empty. No

forces or torques act upon the stage.

A.1 Find the projections of angular velocity ~ω on x and y, given that

~L = Jx~ωxêx + Jyωyêy for material symmetry axes x and y with unit vectors

êx and êy. Provide the answer in terms of L = |~L|, angle θ, and inertia

moments Jx , Jy.

A.2 Find the rotational energy Ex associated with rotation ωx and Ey

associated with rotation ωy. Find total rotational kinetic energy E = Ex+Ey

of the stage as a function of the angular momentum L and cosθ.
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In the following questions of Section A consider the stage’s free rotation

with the initial angular momentum L and θ(0) = θo.

A.3 Let us denote by xo the initial orientation of the stage’s symmetry

axis Cx with respect to inertial reference frame. Using conservation laws find

the maximum angle ψ, which the stage’s symmetry axis Cx makes with xo

during the stage’s free rotation.

Note: Since there are no external torques acting upon the stage, the an-

gular momentum vector remains constant.

Let us now introduce the reference frame Cx1y1z1 with y1 along the constant

angular momentum vector ~L (Fig. 3). This reference frame rotates about

y1 in such a way, that the stage’s symmetry axis always belongs to the Cx1y1

plane.

A.4 Given L, θ(0) = θo , and inertia moments Jx , Jy , find the angular

velocity Ω(t) of the reference frame Cx1y1 about y1 and direction and absolute

value of angular velocity of the stage ~ωs(t) relative to the reference frame Cx1y1
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as functions of time. Provide the answer for ~ωs(t) direction in terms of angle

γs(t) it makes with the symmetry axis Cx.

Note: angular velocity vectors are additive ~ω = ~ωx + ~ωy = ~Ω + ~ωs

Part B. Transient Process

Most of the propellant is used during the ascent, however, after the payload

has been separated from the stage, there still remains some fuel in its tank.

Mass m of residual fuel is negligible in comparison to the stage’s mass M .

Sloshing of the liquid fuel and viscous friction forces in the fuel tank result in

energy losses, and after a transient process of irregular dynamics the energy

reaches its minimum.

B.1 Find the value θ2 of angle θ after the transient process for arbitrary

initial values of L and θ(0) = θ1 ∈ (0, π/2) .

B.2 Calculate the value ω2 of angular velocity ω after the transient process,

given that initial angular velocity ω(0) = ω1 = 1 rad/s makes an angle of

γ(0) = γ1 = 30o with the stage’s symmetry axis. The moments of inertia are

Jx = 4200 kg.m2 and Jy = 15000 kg.m2.
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15. Halteres Interes

A weightless rod of a length 2R is placed perpendicular to a uniform

magnetic field ~B Two identical small balls of mass mand charge q each are

attached at the rod ends. Let us direct z axis along the magnetic field and

place the origin at the rod center. The balls are given the same initial velocity

vo but in opposite directions so that one of the velocities is precisely in the

z-direction. What are the maximum coordinates zmaxof the balls? Express

your answer in terms of q, B, m, v and R Find the magnitude of the ball

accelerations at this moment and express your answer in terms of q, B, m,

v, R and zmax.
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